Jeruju (Acanthus ilicifolius) Leaf Infusion Modulates Superoxide Dismutase (SOD) and Glutathione Peroxidase (GPx) Enzyme Activity in Streptozotocin-Nicotinamide (STZ-NA) Induced Diabetic Rats (Rattus norvegicus)
Keywords:
acanthus ilicifolius, gluthatione peroxidase, Oxidative Stress, superoxide dismutase, Type 2 diabetes mellitusAbstract
Type 2 diabetes mellitus is a metabolic disorder marked by chronic hyperglycemia and oxidative stress, which can reduce the activity of antioxidant enzymes like Superoxide Dismutase (SOD) and Glutathione Peroxidase (GPx). Acanthus ilicifolius (jeruju) contains antioxidant compounds such as flavonoids and phenolics that may enhance these enzyme activities. Evaluate the effect of Acanthus ilicifolius leaf infusion on SOD and GPx activity in Wistar rats induced with type 2 diabetes using Streptozotocin-Nicotinamide (STZ-NA). The experimental design used a post-test only with five groups: normal control (no diabetes, standard feed), positive control (diabetes + metformin 45 mg/kgBW), negative control (diabetes without treatment), treatment group 1 (diabetes + metformin 45 mg/kgBW + jeruju infusion 1.2 ml/200gBW), and treatment group 2 (diabetes + metformin 45 mg/kgBW + jeruju infusion 2.4 ml/200gBW). Treatments were given daily for 30 days, and all rats had free access to food and water. At the end of the study, blood samples were collected to measure SOD and GPx activity using spectrophotometry. The combination of Acanthus ilicifolius infusion and metformin particularly at the 2.4 ml/200gBW dose, was associated with elevated SOD P2 treatment group (76.23 ± 3.65 U/mL; p = 0.000 (<0.05)) and GPx activities P2 (52.11 ± 0.76 U/mL; p = 0.000 (<0.05)) compared to the untreated diabetic group K- (SOD) (28.43 ± 3.17 U/mL) and K- (GPx)(24.18 ± 1.08 U/mL). These findings proves Acanthus ilicifolius infusion holds potential as an adjuvant therapy to mitigate oxidative stress in type 2 diabetes by enhancing SOD and GPx enzyme activities.
Downloads
References
Kazi AA, Blonde L. Classification of diabetes mellitus. Vol. 21, Clinics in Laboratory Medicine. 2019. 1–13 p.
Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:1–23.
Ogurtsova K, Guariguata L, Barengo NC, Ruiz PLD, Sacre JW, Karuranga S, et al. IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res Clin Pract [Internet]. 2022 Jan;183:109118. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168822721004770
Wang H, Hartnett M. Roles of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase in Angiogenesis: Isoform-Specific Effects. Antioxidants [Internet]. 2017 Jun 3;6(2):40. Available from: https://www.mdpi.com/2076-3921/6/2/40
Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol [Internet]. 2019;11(3):45–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31333808
Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med [Internet]. 2018 Dec 1;54(4):287–93. Available from: https://www.tandfonline.com/doi/full/10.1016/j.ajme.2017.09.001
Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol [Internet]. 2018 Jun 4;217(6):1915–28. Available from: https://rupress.org/jcb/article/217/6/1915/39308/Superoxide-dismutases-Dual-roles-in-controlling
del Río LA, López-Huertas E. ROS Generation in Peroxisomes and its Role in Cell Signaling. Plant Cell Physiol [Internet]. 2016 Apr 14;pcw076. Available from: https://academic.oup.com/pcp/article-lookup/doi/10.1093/pcp/pcw076
Singh P, Kesharwani RK, Keservani RK. Antioxidants and Vitamins. In: Sustained Energy for Enhanced Human Functions and Activity [Internet]. Elsevier; 2017. p. 385–407. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128054130000247
Rahaman MM, Hossain R, Herrera‐Bravo J, Islam MT, Atolani O, Adeyemi OS, et al. Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update. Food Sci Nutr [Internet]. 2023 Apr 13;11(4):1657–70. Available from: https://onlinelibrary.wiley.com/doi/10.1002/fsn3.3217
Fang JY, Lin CH, Huang TH, Chuang SY. In Vivo Rodent Models of Type 2 Diabetes and Their Usefulness for Evaluating Flavonoid Bioactivity. Nutrients [Internet]. 2019 Feb 28;11(3):530. Available from: https://www.mdpi.com/2072-6643/11/3/530
Alsawaf S, Alnuaimi F, Afzal S, Thomas RM, Chelakkot AL, Ramadan WS, et al. Plant Flavonoids on Oxidative Stress-Mediated Kidney Inflammation. Biology (Basel) [Internet]. 2022 Nov 26;11(12):1717. Available from: https://www.mdpi.com/2079-7737/11/12/1717
Izzi V. The effects of dietary flavonoids on the regulation of redox inflammatory networks. Front Biosci [Internet]. 2012;17(7):2396. Available from: https://imrpress.com/journal/FBL/17/7/10.2741/4061
Speisky H, Shahidi F, Costa de Camargo A, Fuentes J. Revisiting the Oxidation of Flavonoids: Loss, Conservation or Enhancement of Their Antioxidant Properties. Antioxidants [Internet]. 2022 Jan 7;11(1):133. Available from: https://www.mdpi.com/2076-3921/11/1/133
Dahibhate NL, Saddhe AA, Kumar K. Mangrove Plants as a Source of Bioactive Compounds: A Review. Nat Prod J [Internet]. 2019 Mar 18;9(2):86–97. Available from: http://www.eurekaselect.com/165241/article
Widiastuti EL, Ardiansyah BK, Nurcahyani N, Silvinia A. Antidiabetic Potency of Jeruju (Acanthus ilicifolius L.) Ethanol Extract and Taurine on Histopathological Response of Mice Kidney (Mus musculus L.) Induced by Alloxan. J Phys Conf Ser [Internet]. 2021 Jan 1;1751(1):012052. Available from: https://iopscience.iop.org/article/10.1088/1742-6596/1751/1/012052
Wu Z, Shang X, Liu G, Xie Y. Comparative analysis of flavonoids, polyphenols and volatiles in roots, stems and leaves of five mangroves. PeerJ [Internet]. 2023 Jun 22;11:e15529. Available from: https://peerj.com/articles/15529
Velmani S, Perumal B, Santhosh C, Maruthupandian A. Phytochemical and Traditional uses on Acanthus ilicifolius (L). J Adv Appl Sci Res [Internet]. 2016 Apr 21;1(3):43–8. Available from: http://joaasr.com/index.php/joaasr/article/view/17
Verma P, Shah MB. ACANTHUS ILICIFOLIUS : A TRUE MANGROVE WITH BIOMEDICAL POTENTIAL. Pharm Pharm Sci. 2022;(January).
Furman BL. Streptozotocin‐Induced Diabetic Models in Mice and Rats. Curr Protoc [Internet]. 2021 Apr 27;1(4). Available from: https://currentprotocols.onlinelibrary.wiley.com/doi/10.1002/cpz1.78
Mahammad AM, Tekou FA, Woumbo CY, Kentsop MP, Djuine V, Kuate D. Simultaneous consumption of green and black tea infusions from Cnidoscolus aconitifolius leaves with metformin treatment improves the health outcome in type II diabetic rats. CyTA - J Food [Internet]. 2023 Dec 31;21(1):386–93. Available from: https://www.tandfonline.com/doi/full/10.1080/19476337.2023.2208193
Anjani G, Widyastuti N, Masruroh Z, Yuliana RAD, Almira VG, Tsani AFA, et al. Bioactive components and antibacterial activity in robusta coffee leaves (Coffea canephora). Int J Pharm Res. 2020;12(3):1374–82.
Cong-Hau N, Anh-Dao LT, Nhon-Duc L, Thanh-Nho N. Spectrophotometric determination of total flavonoid contents in tea products and their liquors under various brewing conditions. Malaysian J Anal Sci. 2021;25(5):740–50.
Kaikini A, Dhodi D, Muke S, Peshattiwar V, Bagle S, Korde A, et al. Standardization of type 1 and type 2 diabetic nephropathy models in rats: Assessment and characterization of metabolic features and renal injury. J Pharm Bioallied Sci [Internet]. 2020;12(3):295. Available from: https://journals.lww.com/10.4103/jpbs.JPBS_239_19
Zhang P, Li T, Wu X, Nice EC, Huang C, Zhang Y. Oxidative stress and diabetes: antioxidative strategies. Front Med [Internet]. 2020 Oct 4;14(5):583–600. Available from: http://link.springer.com/10.1007/s11684-019-0729-1
Sohn JW. Network of hypothalamic neurons that control appetite. BMB Rep [Internet]. 2015 Apr 30;48(4):229–33. Available from: http://koreascience.or.kr/journal/view.jsp?kj=E1MBB7&py=2015&vnc=v48n4&sp=229
Zhang H, Tsao R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr Opin Food Sci [Internet]. 2016 Apr;8:33–42. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2214799316300133
Agius L, Ford BE, Chachra SS. The Metformin Mechanism on Gluconeogenesis and AMPK Activation: The Metabolite Perspective. Int J Mol Sci [Internet]. 2020 May 3;21(9):3240. Available from: https://www.mdpi.com/1422-0067/21/9/3240
Şancı E, Köksal Karayıldırım Ç, Dağdeviren M, Yiğittürk G, Buhur A, Erbaş O, et al. Oxidative stress and inflammatory markers in streptozotocin-induced acute and subacute toxicity response. Drug Chem Toxicol [Internet]. 2024 Nov 13;47(6):933–48. Available from: https://www.tandfonline.com/doi/full/10.1080/01480545.2024.2315150
Marino F, Salerno N, Scalise M, Salerno L, Torella A, Molinaro C, et al. Streptozotocin-Induced Type 1 and 2 Diabetes Mellitus Mouse Models Show Different Functional, Cellular and Molecular Patterns of Diabetic Cardiomyopathy. Int J Mol Sci [Internet]. 2023 Jan 6;24(2):1132. Available from: https://www.mdpi.com/1422-0067/24/2/1132
Shah SAR, Khan MI, Jawaid H, Qureshi U, Ul-Haq Z, Hafizur MR. Nicotinamide-cinnamic acid cocktail exerts pancreatic β-cells survival coupled with insulin secretion through ERK1/2 signaling pathway in an animal model of apoptosis. DARU J Pharm Sci [Internet]. 2021 Dec 8;29(2):483–92. Available from: https://link.springer.com/10.1007/s40199-021-00412-w
Kaur N. Role of Nicotinamide in Streptozotocin Induced Diabetes in Animal Models. J Endocrinol Thyroid Res [Internet]. 2017 May 24;2(1). Available from: https://juniperpublishers.com/jetr/JETR.MS.ID.555577.php
Goel S, Singh R, Singh V, Singh H, Kumari P, Chopra H, et al. Metformin: Activation of 5′ AMP-activated protein kinase and its emerging potential beyond anti-hyperglycemic action. Front Genet [Internet]. 2022 Oct 31;13. Available from: https://www.frontiersin.org/articles/10.3389/fgene.2022.1022739/full
Zhan X, Li J, Zhou T. Targeting Nrf2-Mediated Oxidative Stress Response Signaling Pathways as New Therapeutic Strategy for Pituitary Adenomas. Front Pharmacol [Internet]. 2021 Mar 24;12. Available from: https://www.frontiersin.org/articles/10.3389/fphar.2021.565748/full
Al-Khayri JM, Sahana GR, Nagella P, Joseph B V., Alessa FM, Al-Mssallem MQ. Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules [Internet]. 2022 May 2;27(9):2901. Available from: https://www.mdpi.com/1420-3049/27/9/2901
Sarkar P, Nath K, Banu S. Modulatory effect of baicalein on gene expression and activity of antioxidant enzymes in streptozotocin-nicotinamide induced diabetic rats. Brazilian J Pharm Sci [Internet]. 2019;55. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1984-82502019000100508&tlng=en
Ashabi G, Sarkaki A, Khodagholi F, Zareh Shahamati S, Goudarzvand M, Farbood Y, et al. Subchronic metformin pretreatment enhances novel object recognition memory task in forebrain ischemia: behavioural, molecular, and electrophysiological studies. Can J Physiol Pharmacol [Internet]. 2017 Apr;95(4):388–95. Available from: http://www.nrcresearchpress.com/doi/10.1139/cjpp-2016-0260
Vo Q V., Nam PC, Thong NM, Trung NT, Phan CTD, Mechler A. Antioxidant Motifs in Flavonoids: O–H versus C–H Bond Dissociation. ACS Omega [Internet]. 2019 May 31;4(5):8935–42. Available from: https://pubs.acs.org/doi/10.1021/acsomega.9b00677

Published
How to Cite
Issue
Section
Copyright (c) 2025 Ade Chairina, Munifa Majdiyyah, Diana Nur Afifah, Ahmad Syauqy

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.